A 3-D Miniature LIDAR System for Mobile Robot Navigation, Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

Future lunar initiatives will demand sophisticated operation of mobile robotics platforms. In particular, lunar site operations will benefit from robots, both autonomous and tele-operated, that complement or replace human extravehicular activity (EVA). Three-dimensional sensing technology is at the heart of such functionality, enabling safe and reliable navigation in complex, dynamic environments, and serving as a valuable tool for inspection and site survey. Honeybee Robotics therefore proposes to develop a small-envelope, high-performance scanning LIDAR (Light Detection and Ranging) system, geared primarily towards mobile robot navigation, and secondarily to site inspection and survey. The proposed device would draw on the results of a design study conducted by Honeybee, under contract to DARPA, to develop a miniature LIDAR for a serpentine robotic platform. The baseline Honeybee 3D Miniature LIDAR (3DML) design uses an innovative scanning mechanism in conjunction with a pulse-time-of-flight optical rangefinding subsystem. The 3DML design, developed with expert input from Sensor Designs, Inc., an Oregon-based electro-optical systems consultancy, achieves a wide field of view and high resolution while maintaining an ultra-compact package size. Phase I of this SBIR effort will focus on proof-of-concept of the optomechanical system through prototyping and test. Phase II will include development of a fieldable brassboard system prototype and a full path-toflight study. Phase III will include commercialization of a 3DML unit for terrestrial research, and incorporation of 3DML into a flight program. As an experienced developer of miniature electromechanical systems for spaceflight, Honeybee is well-positioned to flight-qualify 3DML in Phase III.

Primary U.S. Work Locations and Key Partners

A 3-D Miniature LIDAR System for Mobile Robot Navigation, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

A 3-D Miniature LIDAR System for Mobile Robot Navigation, Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California
Honeybee Robotics,	Supporting	Industry	Pasadena,
Ltd.	Organization		California

Primary U.S. Work Locations	
California	New York

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Michael Rutberg

Technology Areas

Primary:

- - □ TX04.1.1 Sensing for Robotic systems